Exploring summertime organic aerosol formation in the eastern United States using a regional-scale budget approach and ambient measurements
نویسندگان
چکیده
[1] We present a new method for estimating the overall organic aerosol (OA) formation rate at the regional scale using a chemical transport model (CTM), PMCAMx‐2008, and an extensive set of measurements (Speciation Trends Network, Interagency Monitoring of Protected Visual Environments, Pittsburgh Air Quality Study, Southeastern Aerosol Research and Characterization) for the eastern United States. PMCAMx‐2008 takes into account up‐to‐date OA formation theory including primary OA evaporation, updated secondary OA (SOA) yields from traditional volatile organic precursor gases and multigenerational oxidation chemistry (aging) of vapors from anthropogenic sources, which lowers the volatility of the OA distribution over time. An overall OA formation rate of 22 ± 5 ktons d −1 is consistent with available measurements for this summer time period. We perform an extensive sensitivity analysis of uncertain OA model processes to demonstrate the relationship between the estimated total OA production rate and model performance. Perturbing, within reasonable limits, emissions of volatile precursors, SOA yields from isoprene oxidation, and the solubility of organic vapors produces model predictions for total OA that deviate little from the base case performance. The fractional error and fractional bias vary by less than 6% and 13%, respectively. These cases also result in total OA formation rates within 5 ktons d −1 of the base case. Neglecting chemical aging of anthropogenic OA components results in OA levels significantly lower than the observations everywhere, while aging biogenic SOA with the same parameters used for the base case anthropogenic SOA aging results in overpredictions in both the South and Midwest United States. Aging biogenic and anthropogenic SOA together with a reduced aging reaction rate results in reasonable model performance and an OA formation rate of ∼23 ktons d −1. This suggests that even though uncertainties in the OA aging mechanism and other important parameters may lead to uncertainties in the contributions of specific OA formation pathways, the proposed approach may be used to infer upper and lower limits on the total OA mass formation rate.
منابع مشابه
Role of isoprene in secondary organic aerosol formation on a regional scale
[1] The role of isoprene as a source of secondary organic aerosol (SOA) is studied using laboratory-derived SOA yields and the U.S. Environmental Protection Agency regionalscale Community Multiscale Air Quality (CMAQ) modeling system over a domain comprising the contiguous United States, southern Canada, and northern Mexico. Isoprene is predicted to be a significant source of biogenic SOA, lead...
متن کاملAirborne measurements of trace gases and aerosols over the London metropolitan region
The Emissions around the M25 motorway (EM25) campaign took place over the megacity of London in the United Kingdom in June 2009 with the aim of characterising trace gas and aerosol composition and properties entering and emitted from the urban region. It featured two mobile platforms, the UK BAe-146 Facility for Airborne Atmospheric Measurements (FAAM) research aircraft and a ground-based mobil...
متن کاملSimulation of in situ ultrafine particle formation in the eastern United States using PMCAMx-UF
[1] A three-dimensional chemical transport model has been developed incorporating the Dynamic Model for Aerosol Nucleation for the simulation of aerosol dynamics into the regional model PMCAMx. Using a scaled version of the ternary H 2 SO 4-NH 3-H 2 O nucleation theory and the Two Moment Aerosol Sectional algorithm, the new model (PMCAMx-UF) is used to simulate a summertime period in the easter...
متن کاملUrban impacts on regional carbonaceous aerosols: case study in central Texas.
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a re...
متن کاملEvaporation kinetics and phase of laboratory and ambient secondary organic aerosol.
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015